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An analytical model is presented for the deformation of an ellipsoidal Newtonian
droplet, suspended in another Newtonian fluid with different viscosity and zero
interfacial tension. The theory is exact for any linear velocity field, and is not limited
to small deformations. It encompasses some well-known special cases, such as Jeffery’s
equation for solid axisymmetric particles and Taylor’s small-deformation theory for
droplets. Example calculations exhibit droplet stretching, reorientation, and tumbling,
and provide a reasonable match to available experimental data on transient and
steady droplet shapes. The corresponding rheological theory for dilute dispersions
is also derived, in a form that explicitly includes the effects of microstructure on
dispersion rheology.

1. Introduction
In this paper we model rheology and microstructure for dispersion in which the two

fluids have different viscosities, but interfacial tension is zero. Although interfacial
tension usually plays an important role in dispersions, there are many cases where
it can be neglected. Examples include the initial stages of polymer blending, where
the phases are very viscous and the shear rates are high, and tectonic shearing in the
Earth’s crust, where the inclusions are very large.

A variety of experiments have demonstrated the general behaviour of droplets
with zero interfacial tension. In a steady elongational flow, such droplets extend
indefinitely due to the lack of restoring capillary forces (Kalb, Cox & Manley 1981).
The rate of extension varies with time, and depends on the ratio of droplet to matrix
viscosity. In shearing flows, initially spherical droplets either stretch indefinitely or
tumble periodically, again depending on their viscosity ratio (Torza, Cox & Mason
1972). Experimental evidence also suggests that steady shapes may exist in simple
shear for droplets with zero interfacial tension. An initially spherical droplet with
small interfacial tension and high viscosity ratio will undergo damped tumbling, and
eventually reach a steady shape (Torza et al. 1972). Taylor (1934) and Rumscheidt &
Mason (1961) both found that, once this steady droplet shape is reached, increasing
the shear rate does not change the droplet shape. Therefore, this shape may be steady,
even in the complete absence of interfacial tension.

Existing analytical models of droplet deformation cannot represent this full range
of behaviour observed for systems with zero interfacial tension. One group of models
assumes that the droplet shape is a small perturbation from a sphere. This approach
was initiated by Taylor (1932), with extensions by Cox (1969), Frankel & Acrivos
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(1970), Barthés-Biesel & Acrivos (1973), and Rallison (1980). These theories treat
arbitrary viscosity ratios and capillary numbers, but they are accurate only for small
deformations. Thus, they are most applicable to systems with high interfacial tension
and/or high viscosity ratios. For droplets with zero interfacial tension they apply only
to small changes from a spherical shape.

A second group of analytical models, again including interfacial tension, is based
on slender-body theory (Taylor 1964; Acrivos & Lo 1978; Khakhar & Ottino 1986).
These theories treat highly elongated droplets, but cannot model the transition from
a compact to an elongated shape. They also apply only to droplets that are much less
viscous than the matrix. In the limit of zero interfacial tension, they predict that the
droplet axis elongates at the same rate as the matrix fluid.

In this paper we provide an exact solution for the deformation of a single ellipsoidal
Newtonian droplet immersed in a second Newtonian fluid, under conditions of
arbitrary viscosity ratio, small Reynolds number, and zero interfacial tension. The
solution is exact for all strains, and captures all of the stretching, rotating, oscillating,
and steady droplet behaviour observed experimentally. This model can treat general
deformation histories, such as a period of extensional flow followed by a simple shear
flow, and so is useful for modelling droplet behaviour in complex flows.

Our model is based on the inclusion problem of Eshelby (1957, 1959). Eshelby
solved for the strain field in an elastic material with an ellipsoidal elastic inclusion.
These results have been widely used to predict elastic moduli, thermal expansion
coefficients, and other properties of particle-reinforced composites (e.g. Mura 1982;
Taya & Arsenault 1989). Eshelby also suggested that his approach could be used
to calculate the creeping flow in and around a droplet in a Newtonian fluid. This
extension was first realized by Bilby, Eshelby & Kundu (1975), who presented solutions
for an axisymmetric droplet in an axisymmetric stretching flow, and for an elliptic
cylinder in a planar elongational flow. This theory has subsequently been applied
to other specific flows and droplet shapes, including a three-dimensional ellipsoid
in planar elongation (Howard & Brierley 1976) and two-dimensional droplets in
planar flow (Bilby & Kolbuszewski 1977). In addition, slender-body theories have
been developed for droplets with zero interfacial tension (Spence et al. 1988; Wilmott
1989a, b), and these reproduce the results of the Eshelby theory when the slender
droplet is ellipsoidal.

The present work is the first fully three-dimensional treatment of the Eshelby
approach for fluids, applicable to general linear flows and droplets of arbitrary
ellipsoidal shape and orientation. This implementation is greatly simplified through the
introduction of concentration tensors, which are already a standard tool for inclusion
problems in elasticity (e.g. Tucker & Liang 1999). Solving the full three-dimensional
problem allows us to provide the first comparisons of this theory with experimental
droplet measurements, which are typically three-dimensional even in planar flows. We
also develop a rheological constitutive equation for a dilute dispersion of identical
droplets, and explore its behaviour for simple flows.

It is important to remember that the behaviour of a droplet with zero interfacial
tension may be very different from a droplet with very small interfacial tension.
However, our results for zero interfacial tension do provide some insights into small
interfacial tension behaviour. We will return to this point in the discussion, after
developing the zero interfacial tension theory.

The paper is organized as follows. Section 2 presents the velocity solution within the
droplet. We show how this result allows the prediction of droplet shape and orientation
for large strains, and leads directly to a rheological theory for a dilute dispersion.
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In § 3 we exercise the theory analytically to recover the small deformation theory of
Taylor (1934) and the axisymmetric solid particle solution of Jeffery (1922), and we
develop relations for steady droplet shapes in simple shear. In § 4 we numerically
integrate the model to find droplet shapes and orientations for simple flows, and
compare the resulting behaviour with boundary element calculations and published
experimental data. We also apply the rheological theory to these flows, demonstrating
the dependence of the macroscopic rheology on the microstructure. The paper closes
with a brief discussion. The Appendix presents the mathematical details of the theory,
including some special relations which simplify its implementation.

2. Theory
2.1. Problem statement

Consider a single droplet of one Newtonian fluid suspended in an infinite matrix of
another Newtonian fluid. We choose Cartesian coordinates xi whose origin is fixed
at the droplet centroid. For reasonably compact and symmetric shapes each point on
the surface of the droplet satisfies

Gijxixj + Gijklxixjxkxl + · · · = 1. (2.1)

The time-dependent tensors Gij , Gijkl , . . . , which are symmetric with respect to all pairs
of their indices, describe the instantaneous shape of the droplet. We require that the
initial shape of the droplet be ellipsoidal, so that

Gijxixj = 1 at t = 0. (2.2)

The viscosities of the droplet and matrix may be different, but we assume that
interfacial tension is zero. The problem of interest is to impose a uniform velocity
gradient Lij ≡ ∂vi/∂xj in the far field,

vi → Lijxj as xkxk →∞, (2.3)

and then calculate Gij(t), Gijkl(t), . . . , the droplet geometry as a function of time. The
critical material parameter for this problem is the viscosity ratio λ ≡ µ∗/µ, where
µ∗ and µ are the viscosities of the droplet and matrix, respectively. Throughout this
paper, quantities with a * superscript are associated with the droplet.

Equation (2.3) provides the outer boundary condition for the problem. To complete
the formulation, we require that the velocity and surface traction be continuous at the
interface between the matrix and droplet. The latter condition implies zero interfacial
tension. We also assume that the local Reynolds number for the flow is very small.

The creeping flow assumption allows us to solve for the instantaneous velocity field
within the droplet independently of its deformation history. This solution is presented
in § 2.2. In § 2.3 we then show how the velocity field within the droplet can be used to
model the evolution of the droplet geometry.

2.2. Droplet velocity field

For a droplet of arbitrary geometry, the solution of Stokes’ equations for our problem
results in a complex velocity field within and near the droplet. However, Eshelby
(1957, 1959) and Bilby et al. (1975) found that assuming an ellipsoidal droplet shape
greatly simplifies the problem. While the velocity field around the droplet remains
complex, the instantaneous velocity field within inclusion is linear:

v∗i = L∗ijxj . (2.4)



202 E. D. Wetzel and C. L. Tucker III

This remarkable result, also reported by Goddard & Miller (1967) and implicit in
the work of Roscoe (1967), is valid only for ellipsoidal droplets. The droplet velocity
gradient L∗ij is, in general, different from the far-field gradient Lij , and depends on
the geometry of the ellipsoid and on the viscosity ratio λ.

Eshelby and Bilby et al. provide complete solutions for the velocity field both within
and around the inclusion. For computing droplet deformations, only the linear velocity
field within the inclusion is important. We have found it convenient to re-express the
theory in terms of concentration tensors, a practice common to micromechanics (Hill
1963; Benveniste 1987; Tucker & Liang 1999). Using this approach, the inclusion rate-
of-deformation tensor E∗ij can be related to the far-field rate-of-deformation tensor
Eij by

E∗ij = BijklEkl , (2.5)

where Eij ≡ 1
2

(
Lij + Lji

)
. We call Bijkl the strain-rate concentration tensor. Using the

results of Bilby et al. (1975), the strain-rate concentration tensor can be written as

Bijkl = [I− (1− λ) S]−1
ijkl . (2.6)

The fourth-order identity tensor is defined as

Iijkl = 1
2
(δikδjl + δilδjk). (2.7)

Sijkl is the fourth-order Eshelby tensor (Eshelby 1957), a dimensionless quantity that,
for incompressible fluids, depends only on the ellipsoid axis ratios C ≡ c/a and
D ≡ c/b. Here a > b > c are the semi-axis lengths of the ellipsoid. The full analytical
Eshelby tensor, when substituted into (2.6) and (2.5), completes the exact solution for
E∗ij .

Since the far-field velocity and droplet velocity refer to the same coordinate frame,
we expect that any far-field vorticity Ωij ≡ 1

2

(
Lij − Lji) is superimposed onto the

droplet flow. However, the velocity solution contains an additional and more subtle
result. When the principal axes of the droplet are not aligned with the principal
axes of the far-field strain rate Eij , the far-field strain rate also contributes to the
droplet vorticity. This effect has been explored for two-dimensional droplets by Bilby
& Kolbuszewski (1977). In our notation, the vorticity in the droplet is given by

Ω∗ij = Ωij +CijklEkl , (2.8)

where Ω∗ij is the inclusion vorticity and we call Cijkl the vorticity concentration tensor.
Using the results of Eshelby (1957), this is

Cijkl = (1− λ)Tijmn [I− (1− λ) S]−1
mnkl . (2.9)

Tijkl is the fourth-order alternative Eshelby tensor which, like the Eshelby tensor, is
a dimensionless function of ellipsoid axis ratios only and was solved for by Eshelby
(1957). The vorticity concentration relation shows that even an irrotational far-field
velocity field can induce rotation within the inclusion.

Combining (2.5) and (2.8) provides the inclusion velocity gradient tensor

L∗ij = Ωij + (Bijkl +Cijkl)Ekl. (2.10)

The Appendix provides the analytical formulas for Sijkl , Tijkl , Bijkl , and Cijkl , as well
as a convenient procedure for their calculation. Substituting these relations into (2.10)
completes the exact solution for the velocity gradient tensor within the inclusion.
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2.3. Microstructural evolution

2.3.1. Shape tensor evolution

Eshelby’s solution provides the instantaneous rate of deformation of the droplet.
In addition, from basic kinematic arguments we know that an ellipsoid subjected
to a linear deformation field always deforms into an ellipsoid, even if the principal
deformation axes are not aligned with the principal axes of the ellipsoid (e.g. Cerf
1951). Therefore the requirement of ellipsoidal shape is satisfied for the deformed
inclusion, and the continuous deformation of the inclusion can be modelled. Thus,
Eshelby theory completely and exactly describes the deformation of the ellipsoidal
inclusion, and is not limited to small deformations or preferentially oriented flows.

Since the inclusion remains ellipsoidal for all strains, the higher-order terms in (2.1)
are exactly zero and the second-order shape tensor Gij(t) completely represents the
ellipsoidal droplet geometry at all times. The eigenvalues of Gij are a−2

i , where the
ai are the lengths of the semi-axes of the ellipsoid, so the eigenvalues describe the
droplet shape. The eigenvectors of Gij describe the orientation of the principal axes
of the droplet relative to the laboratory frame.

To derive an evolution equation for the shape tensor, we take the material derivative
of (2.2), apply the chain rule, and utilize the definition of the velocity gradient tensor
ẋi = L∗ijxj . Simplifying yields

Ġij + L∗kiGkj + GikL
∗
kj = 0, (2.11)

where the dot denotes a material derivative. This equation provides the instantaneous
rate of change of the shape tensor in terms of the droplet velocity gradient and the
current shape tensor.

The droplet velocity gradient tensor L∗ij is given by (2.10) in terms of the rate-of-
deformation and vorticity concentration tensors Bijkl and Cijkl . These concentration
tensors are calculated using the relations in the Appendix and the current semi-axis
ratios and rotation tensor. The shape and orientation are determined from the eigen-
values and eigenvectors of the shape tensor, so that (2.10) and (2.11) together form an
exact, closed-form equation for the evolution of Gij . We now have a microstructural
evolution equation that can be used to predict the deformation and rotation history
of a droplet for arbitrary far-field deformation.

2.3.2. Principal shape tensor and rotation tensor evolution

For some special problems it is useful to have a separate set of evolution equations
for the shape of the ellipsoid and its orientation. To do so we first define geometric
coordinates yi. The geometric coordinate system is always aligned with the principal
axes of the droplet. Since the droplet will not necessarily be aligned with or steady in
the laboratory axes, the geometric coordinate system will not necessarily be aligned
with or steady in the laboratory axes. Note that the vorticity of the fluid inside
the droplet can differ from the rotation rate of the droplet axes, so the geometric
coordinate system is not a co-rotating frame.

We will call the shape tensor in the geometric coordinate system the principal shape
tensor G′ij . Points on the droplet surface satisfy

G′ijyiyj = 1. (2.12)

Since the principal shape tensor is always aligned with the principal axes of the
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inclusion, it has the property

G′ij =

{
1/a2

i if i = j

0 if i 6= j,
(2.13)

where each semi-axis ai lies along the corresponding yi coordinate axis. The principal
shape tensor is related to the general shape tensor through a rotation tensor Rij ,
where

Gij = RiuRjvG
′
uv. (2.14)

Taking the material derivative of (2.12) and simplifying yields

Ġ′ij = −L′kiG′kj − G′ikL′kj , (2.15)

where L′ij is the velocity gradient tensor within the droplet in the geometric coordinate
system, ẏi = L′ijyj . Substituting (2.13) into (2.15) and simplifying yields the following
useful relations:

E ′11 =
ȧ1

a1

, E ′22 =
ȧ2

a2

, E ′33 =
ȧ3

a3

, (2.16)

and

E ′12 =
a2

1 − a2
2

a2
1 + a2

2

Ω′12, E ′23 =
a2

2 − a2
3

a2
2 + a2

3

Ω′23, E ′31 =
a2

3 − a2
1

a2
3 + a2

1

Ω′31, (2.17)

where E ′ij and Ω′ij are the rate-of-deformation and vorticity tensors associated with
L′ij . These results were also reported by Bilby & Kolbuszewski (1977).

An evolution equation for the rotation tensor Rij can be derived by taking the
material derivative of the relationship xi = Rijyj , and simplifying. The result is

Ṙij = Ω∗ikRkj − RikΩ′kj . (2.18)

The components of Ω′kj , given in (2.17), can be rewritten in terms of the inclusion
rate-of-deformation tensor using E ′ij = RuiRvjE

∗
uv . Equations (2.15) and (2.18) can

therefore be written explicitly in terms of L∗ij (Wetzel 1999), so that G′ij and Rij
could be evolved as microstructural state variables. However, this proves cumbersome
for numerical application. Therefore all microstructural evolutions calculated in this
paper are performed using the shape tensor Gij and its evolution equation (2.11). G′ij
and Rij are only used for finding the steady droplet shape relations in § 3.3.

2.4. Dispersion rheology

In dispersions the geometry of the microstructure and the material properties of
the two phases determine the macroscopic rheological behaviour. Following Roscoe
(1967) and Batchelor (1970), for a dispersion of Newtonian fluids with zero interfacial
tension the volume-averaged extra stress τ̄ij is related to the volume-average rate of
deformation Ēij by

τ̄ij = 2µĒij + 2φ(µ∗ − µ)Ē∗ij , (2.19)

where φ is the volume fraction of droplets and Ē∗ij is the volume-average rate of
deformation within the droplet phase. This constitutive equation is exact for any
Newtonian dispersion with zero interfacial tension, regardless of the concentration or
geometry of the droplets.

Consider a dilute dispersion composed of droplets with identical shape and orien-
tation, although not necessarily size, and zero interfacial tension. All of the droplets
experience the same rate-of-deformation tensor Ē∗ij . The droplet rate of deformation
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is known as a function of the far-field rate-of-deformation tensor, droplet geometry,
and viscosity ratio through (2.5), so the rheological equation for the dispersion is

τ̄ij = 2µĒij + 2φ(µ∗ − µ)BijklĒkl . (2.20)

This constitutive equation is exact within the assumptions of the present theory.
Note that Bijkl is determined by the shape and orientation of the droplets, so this
rheological theory explicitly couples the macroscopic rheological behaviour of the
mixture to its microstructure. Therefore one must evolve the microstructure through
(2.10) and (2.11) in order to use (2.20) to track average stress.

3. Analytical applications
In this section we apply our theory to systems with special geometries, viscosity

ratios, and flows. We first use the theory to recover the classic microdynamics results
of Jeffery and Taylor. We then predict steady droplet shapes and orientations in
simple shear flows. Finally, the rheological theory is used to calculate the effective
viscosity of a dilute suspension of spherical inclusions.

All of the derivations in this section require limiting forms of the general tensor
relations given in the Appendix. Details of the evaluation of these limits are given by
Wetzel (1999).

3.1. Jeffery’s equation

Jeffery (1922) derived exact equations for the motion of a rigid axisymmetric ellipsoid
suspended in a Newtonian fluid undergoing a creeping flow. Since the particle has
one axis of symmetry and does not deform, the shape and orientation of the particle
are completely described by the axis ratio C ≡ c/a and a unit vector p̂. The motion
of the particle is described by the rate of change of its direction ˙̂p. The governing
equation for this motion, known as Jeffery’s equation, can be written as (Hinch &
Leal 1976)

˙̂pi = −Ωijp̂j + ζ(Eijp̂j − Ejkp̂j p̂kp̂i), (3.1)

where ζ is a shape factor which is given by

ζ =
1− C2

1 + C2
. (3.2)

Jeffery’s solution is a subclass of our theory, corresponding to an axisymmetric
particle with infinite viscosity ratio. For finite axis ratios, the strain-rate concentration
tensor Bijkl (A 13)–(A 19) becomes the zero tensor in the limit of infinite viscosity
ratio. This result reflects the fact that a solid finite-sized particle is not deformed by a
suspending fluid. In the limit as D ≡ c/b→ 1 (axisymmetry) and λ→∞, the vorticity
concentration tensor Cijkl has eight non-zero components (Wetzel 1999):

C1212 = C1221 = −C2112 = −C2121

= −C3131 = −C3113 = C1313 = C1331 =
1

2

1− C2

1 + C2
= 1

2
ζ, (3.3)

where the director p̂ is oriented along the x1-axis. We can re-write this vorticity
concentration tensor in indicial notation for arbitrary orientation of p̂ as

Cijkl = 1
2
ζ
(
p̂ip̂kδjl + p̂ip̂lδjk − p̂j p̂lδik − p̂j p̂kδil) . (3.4)
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Using this result directly in (2.8) gives

Ω∗ij = Ωij + ζ
(
p̂ip̂kEjk − p̂j p̂kEik) . (3.5)

From basic kinematic arguments, the rate of change of p̂ can be related to the particle
vorticity Ω∗ij by (Wetzel 1999)

˙̂pi = −Ω∗ij p̂j . (3.6)

Replacing Ω∗ij in this equation with (3.5) and simplifying gives (3.1), and Jeffery’s
equation is recovered.

Jeffery’s equation shows that a slender, rigid ellipsoid in simple shear flow exhibits
an undamped, periodic tumbling motion. Given the connection between our theory
and Jeffery’s equation, it is not surprising that droplets which are much more viscous
than the matrix also tumble in simple shear. This behaviour is examined in § 4.3.

3.2. Taylor small-deformation theory

Taylor (1934) solved for the velocity field within a spherical droplet suspended in a
planar elongational flow, for the case of zero interfacial tension and arbitrary viscosity
ratio. This result was generalized by Cox (1969) for any linear flow so that, after
some corrections by Frankel & Acrivos (1970), the rate-of-deformation tensor in the
droplet can be written as

E∗ij =
5

2λ+ 3
Eij . (3.7)

This relation is exact for spherical droplets with zero interfacial tension and arbitrary
viscosity ratio.

This velocity solution can also be recovered using our theory. The strain-rate
concentration tensor for a spherical droplet can be found by taking the limit of the
analytical relations from the Appendix as C = D → 1, yielding

Bmn =



1+4λ
λ(3+2λ)

1−λ
λ(3+2λ)

1−λ
λ(3+2λ)

0 0 0

1−λ
λ(3+2λ)

1+4λ
λ(3+2λ)

1−λ
λ(3+2λ)

0 0 0

1−λ
λ(3+2λ)

1−λ
λ(3+2λ)

1+4λ
λ(3+2λ)

0 0 0

0 0 0 1
2

5
3+2λ

0 0

0 0 0 0 1
2

5
3+2λ

0

0 0 0 0 0 1
2

5
3+2λ


, (3.8)

where the result is given in the contracted notation defined in table 1 in the Appendix.
Substituting this result into (2.5) recovers the small-deformation solution, (3.7).

3.3. Steady droplet shapes in simple shear

We now use the theory to derive sufficient conditions under which a three-dimensional
drop with zero interfacial tension will have a steady shape in a simple shear flow. In
this state, fluid within the droplet deforms, but the streamlines, droplet shape, and
droplet orientation remain steady. Note that these droplet shapes are steady only
over the time scale on which a zero interfacial tension theory is valid; the presence of
even a very small interfacial tension introduces an additional time scale over which
interfacial tension effects will eventually be felt. This point is discussed in more detail
in § 5.1.

The first theory predicting steady droplet shapes in simple shear was developed by
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Taylor (1934). While all of Taylor’s experiments had interfacial tension, he observed
that droplets with a high viscosity ratio achieved steady shapes that became indepen-
dent of shear rate at high shear rates. The fact that these shapes are independent of
shear rate implies that interfacial tension is not required to maintain them, once they
have been achieved. Taylor used a small-deformation theory, neglected interfacial
tension, and solved for steady shapes in simple shear. Taylor’s result (as corrected by
Rumscheidt & Mason 1961) is that that the steady droplet shape satisfies

D =
5

2(2λ+ 3)
. (3.9)

Here D is the Taylor deformation parameter,

D ≡ a1 − a2

a1 + a2

, (3.10)

and a1 and a2 are the long and short axes observed in the plane of motion. This
result should be most accurate for very high viscosity ratios, where the deformation
is small.

Bilby & Kolbuszewski (1977) used Eshelby theory to solve exactly for the shapes
of two-dimensional elliptical droplets in simple shear, finding that the shape is steady
if

D =
1

λ− 1
. (3.11)

Roscoe (1967) derived conditions for the steady shape of three-dimensional viscoelas-
tic droplets with zero interfacial tension in a Newtonian matrix, but focused on the
implications for suspension rheology rather than on droplet shapes.

The conditions for steady shape are most easily derived using results from § 2.3.2,
where we represented droplet shape and orientation with the principal shape tensor
G′ij and a rotation tensor Rij . For steady droplet orientation, Ṙij = 0. If we also choose
the laboratory axes to be aligned with the particle axes (Rij = δij) then (2.18) reduces
to L′ij = L∗ij , or E ′ij = E∗ij and Ω′ij = Ω∗ij . Then (2.17) can be rewritten as

E∗12 =
a2

1 − a2
2

a2
1 + a2

2

Ω∗12, E∗23 =
a2

2 − a2
3

a2
2 + a2

3

Ω∗23, E∗31 =
a2

3 − a2
1

a2
3 + a2

1

Ω∗31. (3.12)

These are the conditions for steady droplet orientation. Since the geometric and
laboratory axes are aligned, each ellipsoid semi-axis ai lies along the corresponding xi
laboratory coordinate axis. For steady droplet shape ȧi = 0, and (2.16) reduce to

E∗11 = E∗22 = E∗33 = 0, (3.13)

where we still require the laboratory axes to be aligned with the particle axes.
Since we have chosen our laboratory axes to be aligned with the particle axes,

the only non-zero components of the strain-rate concentration tensor are given by
(A 13)–(A 19). Equation (3.13) then holds if the diagonal components of the applied
rate-of-deformation tensor are all zero. This condition is met by a simple shear flow
which is oriented such that

Lij =

 0 G 0
0 0 0
0 0 0

 . (3.14)

This result shows that a steady droplet shape in simple shear can occur if the droplet
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axes are aligned with the flow axes, which agrees with experimental observations for
drops with small interfacial tension.

For this flow the only non-zero inclusion vorticity is Ω∗12 = −Ω∗21, so for steady
droplet orientation the only component of (3.12) not satisfied trivially is

E∗12 =
a2

1 − a2
2

a2
1 + a2

2

Ω∗12. (3.15)

Since the particle axes are aligned with the laboratory axes, (2.5) and (2.8) give
E∗12 = B1212G and Ω∗12 = ( 1

2
+ C1212)G. Substituting these results into (3.15) and then

using the relations of §§A.1 and A.2 to eliminate the concentration tensor components
in favour of Eshelby tensor components and viscosity ratio yields

(λ− 1)S12 =
a2

2

a2
1 − a2

2

, (3.16)

where we now use contracted notation (see table 1) for the Eshelby tensor Sijkl . This
condition, expressed in coordinates aligned with the particle axes, must be met for the
droplet orientation to remain steady in simple shear flow. This condition is implicit
in the work of Roscoe (1967), whose theory is based on the solution of Jeffery (1922)
for a rigid ellipsoid in a Newtonian matrix.

From §A.1, the off-diagonal components of the Eshelby tensor are bounded by
S12, S21, S23, S32, S31, S13 > 0. Assuming that λ > 1, for (3.16) to be satisfied we need
a1 > a2. This requirements allows three possibilities: a1 > a3 > a2, a1 > a2 > a3, and
a3 > a1 > a2. We will only investigate the first two scenarios here, as they are most
appropriate for comparison with experimental data. The third encompasses the case
of elliptic cylinders in shear flows, and can be used to recover (3.11) (Wetzel 1999).
A full investigation of all of the possible droplet geometries can be found in Wetzel
(1999).

First consider the case a1 > a3 > a2. This is the physical situation most likely to
result from simple shear of an initially spherical droplet, and therefore is most likely
the type of drop observed experimentally. The a1-axis aligned in the flow direction
is longest, and the a2-axis aligned in the shear direction is the shortest. We will use
the convention from the Appendix that the ellipsoid semi-axes of length (a, b, c) are
chosen such that a > b > c. Then in the scenario under consideration a = a1, b = a3,
c = a2, and S12 defined in the laboratory axes corresponds to Sac in the material axis
system. Equation (3.16) becomes, in the material coordinates and using our axis ratio
definitions,

(λ− 1)Sac =
C2

1− C2
. (3.17)

Substituting the full form of Sac = 1− Sbc − Scc from §A.1 yields

1

λ− 1
=
D(2C2 − D2 − C2D2)E(θ, p)− C2D(1− D2)F(θ, p) + (D2 − C2)(1− C2)1/2

(D2 − C2)(1− D2)(1− C2)1/2
,

(3.18)

where p and θ are defined by (A 12). An interesting consequence is that this one
equation for steady droplet orientation is a function of the two independent axis
ratios C and D. Therefore, for a given viscosity ratio and in the absence of interfacial
tension, there are many steady droplet shapes. To our knowledge this result has not
been reported experimentally, nor has it been suggested theoretically.
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To find the steady droplet shape for an axisymmetric rod-like drop, with a1 > a3 =
a2, we can take the limit of (3.18) as D → 1. The result is

λ =

6(1− C2)1/2 − 3C2 ln
1 + (1− C2)1/2

1− (1− C2)1/2

2(1 + 2C2)(1− C2)1/2 − 3C2 ln
1 + (1− C2)1/2

1− (1− C2)1/2

. (3.19)

This is the condition for determining the steady droplet shape as a function of
viscosity ratio for a rod-like axisymmetric drop with its long axis aligned along the
flow direction. Taking the limit of (3.19) as C → 0 gives a value of λ = 3. If the
viscosity ratio is less than 3, there are no steady rod-like axisymmetric droplet shapes.

It is also possible to have a drop that is as wide as it is long, with a1 = a3 or C = D.
Since a2 is the shortest drop dimension, this case corresponds to a disk whose flat
face is oriented normal to the shear direction. Taking the limit of (3.18) as C → D
yields

λ =
(4− C2)(1− C2)1/2 − 3C cos−1(C)

(2 + C2)(1− C2)1/2 − 3C cos−1(C)
. (3.20)

This is the condition for determining the steady droplet shape as a function of
viscosity ratio for a disk-like axisymmetric drop with its short axis aligned in the
shear direction. Taking the limit of (3.20) as C → 0 gives a value of λ = 2. If the
viscosity ratio is less than 2, there are no steady disk-like axisymmetric droplet shapes.

In a similar manner, the condition for steady droplet shapes for the case of
a1 > a2 > a3 is found to be (Wetzel 1999)

1

λ− 1
=
D(C2 + D2 − 2C2D2)E(θ, p)− 2C2D(1− D2)F(θ, p)− D2(D2 − C2)(1− C2)1/2

(D2 − C2)(1− D2)(1− C2)1/2
.

(3.21)

This configuration is similar to the case immediately above, except that now the
shortest droplet axis is oriented along the vorticity axis. In the limit where a1 = a2 > a3

the droplet becomes disk-like and axisymmetric, with the shortest axis perpendicular
to the shear plane. In this limit, as D → C in (3.21), we find the solution λ → ∞.
Therefore this droplet configuration is only steady for solid inclusions.

While we have shown that a variety of steady shapes are possible in simple shear,
we have not yet shown that these shapes are stable, or how they might be achieved.
These points are explored in § 4.3.

3.4. Effective viscosity of a dispersion of spherical droplets

As a check on our rheological theory, we calculate the effective viscosity of a dilute
dispersion of spherical droplets. Substituting the spherical droplet rate-of-deformation
tensor from (3.7) into the rheological constitutive equation (2.20) and simplifying yields

µeff = µ

(
1 + φ

5λ− 5

2λ+ 3

)
, (3.22)

where µeff ≡ τ̄12/Ē12. This relation agrees with the result derived by Mellema &
Willemse (1983). Since the drops will deform to non-spherical shapes at finite strains,
this effective viscosity is only valid at the instant when shearing begins. The subsequent
rheological behaviour is examined in § 4.5.
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Equation (3.22) can be compared with the well-known result of Taylor (1932),

µeff = µ

(
1 + φ

5λ+ 2

2λ+ 2

)
, (3.23)

which gives the effective viscosity of a suspension with large interfacial tension such
that the droplets remain nearly spherical. For equal volume fractions and viscosity
ratios, the Taylor viscosity is always higher than the viscosity of the dispersion without
interfacial tension.

4. Numerical applications
In this section we present numerical results that explore various types of behaviour

of the theory. All computations utilize the shape tensor evolution equation (2.11). The
concentration tensors Bijkl and Cijkl are computed using the analytical relations of the
Appendix, and these concentration tensors are used to calculate the inclusion velocity
gradient tensor by (2.10). Results for droplet shape and orientation are expressed in
terms of axis ratios and orientation angles, which are calculated from the eigenvalues
and eigenvectors of Gij .

Equation (2.11) is integrated in time using a double-precision fourth-order Runge–
Kutta technique with adaptive step sizing (Press et al. 1992). The accuracy tolerances
are set to keep numerical errors less than 1× 10−10. The elliptic integral functions of
(A 9)–(A 11) are evaluated using Carlson’s standard elliptic integral functions (Press
et al. 1992). Limiting forms of the integrals were also derived and implemented for
special geometries where the general formulas become indeterminate (Wetzel 1999).

4.1. Comparison with boundary element computations

To confirm the validity of our theory and the accuracy of our numerical implemen-
tation, we compare our results with direct numerical simulations of single droplets.
While there are numerous examples of such calculations in the literature (e.g. Kennedy,
Pozrikidis & Skalak 1994; Cristini, Blawzdzieweicz & Loewenberg 1998), there are
few published results for droplets with zero interfacial tension. We will compare our
results with droplet deformations predicted by M. Toose (1998, personal communi-
cation) using a three-dimensional boundary element method. Figure 1(a) compares
the droplet shape and orientation angle θ calculated from our theory and from
the boundary element computations, for simple shear of an initially spherical drop
with viscosity ratio λ = 3. The calculations are carried out to a maximum strain of
Gt = 5.0, where G is defined in (3.14). θ is the angle between the major axis of the
drop and the flow direction, and droplet shape is described by the axis ratios C = c/a
and D = c/b. Agreement is extremely good, with some differences at higher strains
as mesh distortion limits the accuracy of the boundary element code. Figure 1(b)
compares the results from the two methods for the planar elongational flow defined
by (4.3) and a viscosity ratio of λ = 18.6. Again, agreement between the two methods
is excellent.

4.2. Droplet evolution in uniaxial elongation

Figure 2 shows the shape evolution of an initially spherical droplet as a function of
strain in a uniaxial elongational flow, defined as

Lij =

 2U 0 0
0 −U 0
0 0 −U

 . (4.1)
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Figure 1. Comparison of the theory with boundary element computations by M. Toose. (a) Simple
shear of an initially spherical droplet with λ = 3. (b) Planar elongation of an initially spherical
droplet with λ = 18.6.

For all viscosity ratios the droplet elongates into a prolate ellipsoid. The deformation
of the drop is plotted in terms of the parameter α, defined as

α ≡ a/ro, (4.2)

where ro is the initial droplet radius and a is the length of the long semi-axis of the
deformed ellipsoid.

The initial rate of droplet deformation decreases as the viscosity ratio increases,
while for λ < 1 the initial deformation rate is higher than the imposed rate. This
latter result has been observed experimentally (Delaby et al. 1994).

Once the droplet is elongated it deforms at the applied strain rate regardless of
viscosity ratio, and the curves become parallel. This occurs because the external force
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Figure 2. Droplet deformation α as a function of strain for initially spherical droplets in uniaxial
elongation.

acting on one half of a slender axisymmetric droplet, ignoring numerical factors and
logarithmic slender-body factors, equals µ(E11 − E∗11)a

2, while the internal force at
the centre is µ∗E∗11b

2. Equating these two forces gives λ(b/a)2 = (E11/E
∗
11) − 1. Thus,

provided that (a/b)2 is large compared to λ, we have E∗11 ≈ E11 and the droplet
elongates at nearly the same rate as the external fluid.

4.3. Droplet evolution in simple shear

The behaviour of an initially spherical droplet in simple shear flow is shown in
figure 3. The flow is defined in (3.14) and θ is the angle between the major axis of the
drop and the x1-axis. The a and c axes lie in the shear (x1, x2)-plane and the b-axis
is oriented in the vorticity (x3) direction. Two regimes are apparent: for λ 6 3 the
droplet stretches indefinitely, while for λ > 5 the droplet rotates periodically. (The
period for λ = 5 is greater than the maximum plotted strain.)

Figure 3(b) shows the droplet width b during deformation. For viscosity ratios
greater than unity the drop decreases in width, while for viscosity ratios less than
unity the drop actually increases in width as it is stretched. Similar effects have been
observed experimentally in viscoelastic fluids at λ = 0.34 and 0.13 (Levitt & Macosko
1996), but were attributed to normal stress differences. Our results show that droplet
widening can occur in purely Newtonian systems when the viscosity ratio is less
than unity. Note that even without interfacial tension, a droplet in a planar flow
experiences three-dimensional deformation.

The periodic behaviour shown in figure 3 for high-viscosity, initially spherical
droplets represents the transition between two dynamic regimes, tumbling and wob-
bling. This behaviour was first reported by Bilby & Kolbuszewski (1977), who called
the regimes rotation and oscillation. This behaviour can be achieved by starting with
non-spherical initial shapes, as shown in figure 4. The initial shapes for this figure
are axisymmetric and somewhat elongated in the flow direction (a > b = c), and
λ = 10. The axis of the longest droplet (dotted curves) tumbles, executing complete
rotations that are reminiscent of the Jeffery orbits of rigid ellipsoids. However, the
axis changes length substantially over the period of rotation. The axis of a shorter



Droplet deformation with zero interfacial tension 213

15

10

5

0

–5
0 4 8 12 16

1

k=0.1

(a)
20

25

3

5
10

20

a
ro

1.2

1.0

0.8

0 4 8 12 16

1

k=0.1
(b)

1.4

51020

b
ro

0.8

0.4

0 4 8 12 16

1

k=20
(c)

1.2

3

5

10

0.1

c
ro

20

0

0 4 8 12 16

k=0.1, 1, 3

(d )
40

5
10

20

3

–10

–40

θ
 (

de
g.

)

Time×G Time×G

Figure 3. Evolution of initially spherical droplets in simple shear. (a) Scaled axis length a/ro. (b)
Scaled axis length b/ro. (c) Scaled axis length c/ro. (d) Orientation angle of droplet major axis.

droplet (broken curves) wobbles within a narrow range about θ = 0, and the change
in the axis length is small. A droplet with intermediate length (solid curves) rotates
from +45◦ to −45◦, and is circular in the (x1, x2)-plane at these extremes. This is the
same transition behaviour as shown by the initially spherical droplet, although this
droplet is not spherical when a = c.

The dash-dot curves in figure 4 are for an initial shape that is very close to the
axisymmetric steady shape given by (3.19). This droplet wobbles with a very small
amplitude, changing less than ±1◦ in angle and ±0.01 in aspect ratio. Although
not shown in this figure, droplets whose aspect ratio a/c at θ = 0 is less than this
steady value but greater than unity will wobble, while making a/c initially less than
unity will lead to tumbling. Bilby & Kolbuszewski (1977) predicted this behaviour
for two-dimensional drops, and we see here that three-dimensional drops exhibit the
same behaviour.

This variety of behaviour in simple shear flow is a consequence of a competition
between vorticity-induced rotation, deformation-induced rotation, and droplet stretch-
ing. The vorticity-induced rotation, represented here by the Ω∗ij term in (2.18), rotates
the droplet clockwise in this simple shear flow. The vorticity of a reasonably compact
droplet is nearly equal to the far-field vorticity. The deformation-induced rotation is
represented by the Ω′ij term in (2.18). This mechanism pulls the droplet axis towards
the principal stretch direction, +45◦ in simple shear, and increases in magnitude as
the droplet axis deviates from the principal stretch direction. Deformation-induced
rotation is most significant for compact droplet shapes, where a small off-axis elon-
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gation can cause a large reorientation of the droplet’s principal axis. In addition to
these rotations, each principal axis of the droplet stretches at a rate proportional to
the far-field stretch rate parallel to that axis. In simple shear this rate is maximum
when the axis is oriented at +45◦, zero at 0◦, minimum at −45◦, and zero at ±90◦.

The steady droplet shape is oriented at θ = 0, so there is no stretching along the
droplet’s principal axes. As pointed out by Taylor (1934), for this steady shape the
vorticity-induced rotation and the deformation-induced rotation are exactly balanced,
and the droplet shape is stationary even though the fluid within the droplet is not.
This balance was the basis for the derivation of steady drop shapes in § 3.3.

If a high-viscosity droplet is considerably more elongated than this, like the dotted
curves in figure 4, then vorticity-induced rotation dominates and the droplet tumbles.
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The rotating droplet sees periodic extension and compression along its main axis,
which causes the periodic change in droplet shape.

Now suppose that the droplet is only slightly more elongated when at θ = 0 than
the steady shape, like the broken curves in figure 4. Initially vorticity-induced rotation
is still dominant and the droplet rotates clockwise, but more slowly than the tumbling
drop. Once θ < 0, the long axis of the droplet contracts. This shortened droplet is
more sensitive to deformation-induced rotation, causing it to rotate counter-clockwise
until θ > 0. In this quadrant the droplet axis stretches, the elongating droplet rotates
clockwise, and the cycle begins again.

These wobbling trajectories are orbits around the steady droplet shapes discussed
in § 3.3; in the language of dynamical systems they are centres (Bilby & Kolbuszewski
1977). Thus, the steady shapes are neutrally stable: if the droplet is perturbed from
its steady shape then it will oscillate in an undamped manner, always remaining close
to the steady shape. We have also confirmed that these shape are neutrally stable
with respect to small changes in viscosity ratio and far-field flow.

Returning to the initially spherical droplets of figure 3, the same reasoning explains
the transition from periodic rotation to stretching. As pointed out by Hinch (1975),
an initially spherical droplet with λ� 1 rotates almost with the vorticity of the flow.
Owing to its rotation it sees a periodic extension and compression, but due to its
high viscosity it experiences little deformation. This is the periodic behaviour seen
in figure 3 for λ > 5. As λ decreases, deformation-induced rotation increases, and
this slows the rotation when the long axis of the droplet is between θ = 45◦ and
θ = 0. Slower rotation in this orientation range leads to even more stretching, and a
runaway process develops in which the droplet stretches without bound as its long
axis rotates asymptotically towards the flow direction. This is the stretching regime
seen in figure 3 for λ 6 3.

4.4. Comparison with experiments

While there have been many experimental studies of droplets, very few have been
conducted with zero interfacial tension. Here we compare our theory to the limited
available data.

4.4.1. Planar elongational flow

Figure 5 compares our computed drop shapes to those measured experimentally
by Kalb et al. (1981) for a planar elongation flow,

Lij =

 E 0 0
0 −E 0
0 0 0

 . (4.3)

The experiments were performed in a four-roll mill using initially spherical drops with
negligible interfacial tension and various viscosity ratios. The deformation parameter
α is defined in (4.2). Both theory and experiments exhibit identical rates of deformation
at small and large strains. At small strains, the experiments and calculations agree
with Taylor’s small-deformation theory, represented by the solid lines. The equivalence
of our theory to Taylor’s small deformation result was demonstrated analytically in
§ 3.2. At large deformations, the rate of droplet extension becomes equal to the applied
deformation rate, as discussed in § 4.2.

The general shapes of the experimental and theoretical curves are similar, but
for intermediate viscosity ratios the quantitative agreement is not good. Figure 1(b)
showed that our computations closely match the boundary element calculations for
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Figure 5. Droplet extension in planar elongational flow. Points represent experiments from Kalb et
al. (1981), dashed curves are the present theory, and solid lines represent Taylor’s small-deformation
theory (3.7) (reproduced by permission).

this flow and λ = 18.6. This suggests that our calculations are accurate for these
flows. We suspect that the differences in figure 5 are due to non-ideal features of the
experiment, such as wall effects, non-uniform extension rate, or a non-spherical initial
droplet shape.

4.4.2. Droplet rotation in simple shear

Torza et al. (1972) reported droplet rotation in simple shear for initially spherical
drops with zero interfacial tension and a viscosity ratio of λ = 21 (their system
28). Figure 6 compares their experimental results with predictions of our theory.
Theoretical calculations are shown for an initially spherical drop (initial axis ratio
Do = 1). For both the experiment and the calculation the droplet elongates initially
along the +45◦ axis, reaches its maximum elongation with the long axis parallel to
the flow, and returns to a sphere along the −45◦ axis. Only the first cycle measured by
Torza et al. is plotted, but nearly identical deformation behaviour was observed for a
second cycle. This repetition suggests that the droplet evolution is periodic. Torza et
al. measure a period of oscillation (scaled by the shear rate) of 8.88, while the theory
predicts a scaled period of 7.62.

The measured deformations are much greater than the theoretical predictions
assuming an initially spherical drop. Torza et al. attribute the discrepancy to either
diffusion effects or non-idealities of the flow apparatus. Since the droplet was viewed
only along the vorticity axis, another source of error could be a non-spherical initial
droplet shape. Also shown in figure 6 is the evolution of a droplet that is initially
circular in the plane of flow but is a factor of 3.32 thinner in the vorticity direction
(Do = 0.302). This deviation from sphericity produces deformations almost identical to
those observed by Torza et al., with a predicted period of oscillation of 8.89. Although
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it seems unlikely that such significant deviations would have gone unnoticed by the
experimenters, it is possible that smaller deviations of this type contributed to the
overall experimental error.

4.4.3. Steady droplet shapes in simple shear

Taylor (1934), Rumscheidt & Mason (1961), and Torza et al. (1972) measured
steady droplet shapes for systems with small interfacial tension and high viscosity
ratio. In all of these cases the initial droplet shape is approximately spherical, and for
large viscosity ratios and high shear rates the final steady shape is ellipsoidal with
the long axis aligned in the flow direction. In the experiment of Taylor, the droplet
approached its steady shape monotonically with time. Torza et al. (1972) observed
that droplets with high viscosities and zero interfacial tension rotated indefinitely
in simple shear flow, but that small amounts of interfacial tension damped these
oscillations so that a steady shape resulted. Rumscheidt & Mason (1961) observed
that at low shear rates the steady droplet shape was approached monotonically, but
at higher shear rates the droplet executed a damped oscillation.

For all of these experiments the interfacial tension is small but non-zero, as
evidenced by the progression of the initially spherical droplet towards a steady
droplet shape, rather than the undamped rotation calculated in § 4.3. However, Taylor
(1934) theorized that, for cases of sufficiently high viscosity ratio and sufficiently
low interfacial tension, this steady shape is independent of interfacial tension. Taylor
demonstrated this behaviour experimentally by showing that the steady droplet shape
was unaffected by increasing the shear rate. Rumscheidt & Mason (1961) also observed
that, for their high viscosity ratio systems, the steady droplet shapes remained constant
as shear rate was increased. Most of the experiments of Torza et al. (1972) are at
shear rates where surface tension is quite significant. However, at high shear rates
their system 26 oscillated with only very weak damping, so we can be reasonably
confident that the steady droplet shape from this experiment is also unaffected by the
presence of a small interfacial tension.
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Because these experimentally measured shapes are not affected by surface tension, it
is interesting to compare them to the steady shapes derived in § 3.3 for zero interfacial
tension. One limitation of this comparison is that the experimenters only report
a deformation parameter in the shear plane. For the theory of Taylor (1934), the
droplet width is assumed to remain constant during shearing (equivalent to requiring
D = C1/2), so a unique in-plane steady shape is predicted for each viscosity ratio. Our
more general analysis predicts a family of possible three-dimensional steady droplet
shapes for each viscosity ratio. One shape might be selected from this family during
the transient approach to the steady shape. Rather than make assumptions about
this transient process, we simply plot steady in-plane droplet shapes for several likely
out-of-plane shapes, and see if the experimental results fall within these bounds.

Figure 7 compares the theoretical predictions of § 3.3 with the experimental data
of Taylor (1934), Rumscheidt & Mason (1961), and Torza et al. (1972) for steady
droplet shapes in simple shear. From Torza et al. we use only system 26. The data are
presented in terms of the Taylor deformation parameter D, defined in (3.10), where
again a1 and a2 are the long and short axes in the shear plane. Shown in the figure
are our theoretical steady shapes for axisymmetric rod-like drops with the long axis
aligned in the flow direction (a3 = a2), (3.19); axisymmetric disk-like drops with the
short axis aligned in the shear direction (a3 = a1), (3.20); and non-symmetric rod-like
drops with the long axis aligned in the flow direction and a3 = 1

2
a2, (3.21) with

D = 1/2. Also shown in the figure are predictions based on the small-deformation
theory of Taylor (1934), (3.9).

The results show good agreement between the experimental data and our theory.
The data best match the theoretical predictions for droplets with a1 > a3 = a2.
Except for the single data point from Taylor, the data are bounded by the curves
for a1 > a2 = 2a3 and a1 = a3 > a2. In general, the predictions of our theory match
the experimental data much better than Taylor’s theory, especially at low viscosity
ratios. This behaviour is expected, since Taylor’s theory is most accurate at low
deformations, but deformations are significant at low viscosity ratios. Comparing
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the a2 = 2a3 and a3 = a1 curves also shows that steady droplet shapes are much
more sensitive to changes in the droplet’s shear-direction dimension than its vorticity-
direction dimension.

4.5. Rheological behaviour

Using (2.20) we can calculate the macroscopic stress for a dilute dispersion in any
homogenous flow. Here we provide stress calculations that complement the droplet
shape evolution results of §§ 4.2 and 4.3. Note that droplet shapes must be found
as part of this rheological calculation. In all cases the initial dispersion consists of
spherical droplets.

Figure 8 shows dimensionless elongational viscosity, defined as

ˆ̄η ≡ (τ̄11 − τ̄22)− 6µU

6µUφ
= (λ− 1)

E∗11 − E∗22

3U
, (4.4)

as a function of strain under uniaxial elongation, (4.1). Figure 2 shows droplet
elongation during this flow. For all viscosity ratios the mixture undergoes stress
growth as the drops deform into cylinders. For λ > 1, this behaviour is due to the
improved reinforcement offered by slender fibre-like droplets as compared to spheres.
For λ < 1, the increase in extensional stress can be attributed to a similar effect, with
the higher viscosity matrix becoming more efficiently loaded as the droplets elongate.
Note that in all cases the droplets elongate unboundedly, but the extensional viscosity
approaches a limiting value. This value corresponds to the effective viscosity of a
dispersion in which the droplets extend at the same rate as the matrix, as discussed
in § 4.2.

Figure 9 shows the dimensionless shear stress, defined as

τ̂12 ≡ τ̄12 − µG
µGφ

= (λ− 1)
2E∗12

G
, (4.5)

as a function of strain for simple shear, (3.14). Figures 3(a)–3(d) show the droplet
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shape and orientation during this flow. In the stretching regime (λ = 0.1 and λ = 3) the
shear stress first grows and then decays. The initial growth is due to a reinforcement
effect similar to the uniaxial elongational flow case, as the droplets elongate initially at
45◦ to the flow direction. At higher strains the droplets reinforce less efficiently as they
align with the shearing direction, and the stress decreases. For the tumbling regime
(λ = 5, 10 and 20) the shear stress oscillates in phase with the droplet deformation,
but the oscillation is small because the droplet shape is never far from spherical.

For this flow figure 10 shows the dimensionless first normal stress difference, defined
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Figure 11. Growth of dimensionless second normal stress difference during simple shear of a
dilute dispersion of initially spherical droplets.

as

Ψ̂1 ≡ τ̄11 − τ̄22

µGφ
= 2(λ− 1)

E∗11 − E∗22

G
. (4.6)

For the stretching regime cases (λ = 0.1 and λ = 3) the first normal stress difference
initially grows and then decays toward zero, again due to the initial off-axis alignment
of the drops. For the tumbling cases (λ = 5, 10 and 20) the normal stress difference
oscillates in phase with the droplet deformation. When the droplets are aligned with
the laboratory axes, either parallel or perpendicular to the flow direction, the first
normal stress difference is zero.

We can also define a dimensionless second normal stress difference in simple shear
as

Ψ̂2 ≡ τ̄22 − τ̄33

µGφ
= 2(λ− 1)

E∗22 − E∗33

G
. (4.7)

The second normal stress difference is shown in figure 11 to depend on microstructure
similar to the first normal stress difference.

Note from (4.6) and (4.7) that the normal stress differences (τ̄11− τ̄22) and (τ̄22− τ̄33)
are proportional to the shear rate G, and not to G2 as in a viscoelastic fluid. This
distinction reflects the fundamentally different mechanisms responsible for normal
stress effects in viscoelastic fluids and purely viscous dispersions. In a viscoelastic
fluid, normal stress is a second-order effect related to elastic memory. The normal
stress differences in figures 10 and 11 for the viscous dispersion are a first-order effect
caused by flow-induced anisotropy in the microstructure.

5. Discussion
5.1. Zero versus small interfacial tension

Our model system imagines two fluids with different viscosities and zero interfacial
tension that are completely immiscible. Any real fluid pair will either have interfacial
tension, or will be miscible and will interdiffuse. However, in many cases the time
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scales for diffusion and interfacial tension effects are much longer than the time
scale for deformation due to external flow. In such cases the real system can behave
similarly to the model system, and over some range of time the zero interfacial tension
theory can provide accurate predictions of droplet behaviour. For the remainder of
the discussion we will assume that diffusion is negligible, and focus on interfacial
tension effects.

Consider first a droplet that has been elongated by a far-field flow, which is then
stopped. When the far-field flow is halted, a droplet with zero interfacial tension simply
maintains its shape. However, a droplet with finite interfacial tension relaxes back to
a spherical shape or, if it has been extended enough, breaks up into smaller droplets.
Relaxation and breakup occur over a time scales tr and tb that are proportional to
µa0/σ, where σ is the interfacial tension and a0 is the radius of the spherical droplet.
These time scales also depend on droplet shape: as droplet aspect ratio increases, the
relaxation time tr increases while the breakup time tb decreases. Once the far-field flow
has stopped, tr and tb are the only time scales in the problem. The droplet behaviour
is approximated by zero interfacial tension theory only for t � tr and t � tb, such
that droplet deformation is negligible.

Next, consider the effect of a steady elongational flow on an initially spherical drop.
Droplets with zero interfacial tension extend indefinitely, while droplets with finite
interfacial tension either reach a steady shape or extend until capillary instabilities
cause breakup. We can characterize the flow by its scalar deformation rate E, and
define a characteristic time for flow-induced deformation tf = 1/E. At times less
than tr , relaxation effects are unimportant and, if tf � tr , the droplet can experience
large deformation before interfacial tension effects become significant. Zero interfacial
tension theory can be used to model deformation during this period. As the droplet
stretches and its cross-section decreases, tb also decreases, so that eventually breakup
occurs. Zero interfacial tension theory should be applicable to the deformation of
a droplet up to this point of capillary instability. Such an approach for modelling
the extension and breakup of droplets is philosophically similar to that proposed
by Khakhar & Ottino (1987). Khakhar & Ottino treated droplets that were already
stretched into a slender shape and had λ� 1. The present theory has the advantage
of treating arbitrary viscosity ratios, and can start from a compact droplet shape.

The situation for the startup of simple shear flow is more subtle. First consider
droplets with low viscosity ratio, say λ < 3. With zero interfacial tension such a
droplet stretches indefinitely. With finite interfacial tension, the droplet behaves much
as it does in elongational flow: if tf > tr then the droplet reaches a limiting shape,
or breaks into two droplets. However, if tf � tr then the droplet shape evolution will
be very close to zero-tension theory, up until the point where reductions in droplet
cross-section lead to breakup.

At higher viscosity ratios, say λ > 5, an initially spherical droplet rotates periodically
in simple shear. With zero interfacial tension this oscillation continues indefinitely,
but a small interfacial tension damps the oscillation and brings the droplet to a
steady shape. The zero interfacial tension theory also predicts that steady shapes
are possible in simple shearing flows, but these can only be realized by starting
with the steady shape as an initial condition. The steady shapes for zero interfacial
tension and small interfacial tension are, however, related. Experiments and small-
deformation theory show that steady droplet shapes derived from damped oscillations,
once achieved, do not change significantly as interfacial tension decreases. While the
dynamics of achieving the steady shape from an initially spherical droplet rely on
interfacial tension, the shape itself is independent of interfacial tension provided the
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strain rate is large. This observation is supported by the close agreement in § 4.4.3
between experimentally measured shapes and the steady shapes predicted by the zero
interfacial tension theory.

To date, no experiments have shown whether the damped steady droplet shape is
determined solely by the viscosity ratio, or whether other factors such as deformation
history or interfacial tension also play a role. In the latter scenario, running the
experiment at different initial shear rates, or stopping and restarting the experiment,
could result in different steady droplet shapes. Any of these droplet shapes, once
achieved, could still satisfy zero interfacial tension theory, which predicts multiple
steady droplet shapes for each viscosity ratio. Alternatively, a small interfacial tension
could select a single steady shape at long times. This question could be explored
theoretically by adding a small interfacial effect to the present theory, while retaining
the assumption of an ellipsoidal droplet. A model of this type has recently been
proposed by Maffettone & Minale (1998), but does not reduce to our result when
interfacial tension goes to zero unless the droplet is spherical. This possibility remains
as a topic for future investigation.

5.2. Summary

We have presented a method for exactly calculating the three-dimensional defor-
mation of an ellipsoidal Newtonian droplet immersed in a Newtonian fluid, when
interfacial tension and inertia are negligible and the far-field velocity field is linear.
The model uses the classical Eshelby solution for ellipsoidal inclusions, exploring
the general three-dimensional problem for the first time. Unlike previous Eshelby
solutions, the theory is not limited to small deformations, two-dimensional flows,
or particular droplet orientations. The theory predicts a rich variety of behaviour,
including stretching, tumbling, wobbling, and steady droplet shapes.

Limiting cases of the model were explored to provide information on the behaviour
of microstructures with special geometries or viscosity ratios. These special cases
reduce to existing theories for dynamic and rheological behaviour, underscoring the
generality of the theory with respect to geometry and viscosity ratio. This connection
also provides an important link between the dynamic behaviour of solid particle
suspensions and liquid droplet suspensions.

The full three-dimensional dynamic droplet solution, implemented here for the
first time, provides insight into phenomena that cannot be explored with existing
two-dimensional models. Tumbling, wobbling, stretching, and steady shape regimes
were observed during simple shear. Analytical investigation of steady droplet shapes
showed that, for a given viscosity ratio, a range of steady droplet shapes is possible,
and relationships describing these shapes were presented. Also in simple shear, droplet
widening for systems with viscosity ratios less than unity was observed. The full three-
dimensional rheology of suspensions during deformation was also directly calculated,
revealing behaviour that cannot be predicted with microstructure-independent models.

This theory has many applications. Our own interest is to model microstructure
development during mixing processes. After solving for the flow field in an industrial
mixing device, one could apply our theory to track the evolution of a droplet shape
and orientation throughout the flow. In fact, the numerical methods typical of such
complex flow modelling should also allow the implementation of our rheological
model, so the microstructure and flow problems could be directly coupled. The ability
to predict accurately the microstructure in general mixing flows would enable the
design of processes that impart some desired microstructure to the material.

This work also contributes to our understanding of microstructural models for
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liquid–liquid mixtures. The Doi & Ohta (1991) model and its extensions attempt to
develop equations for microstructural evolution and rheology in liquid–liquid disper-
sions, using the amount and orientation of the interfacial area as a microstructural
state variable. The present model, by providing an exact solution of a significant
special case, can shed light on the appropriate forms of such models when the two
fluids have different viscosity.

This work was supported in part by the National Science Foundation, Grant No.
DMI-981320. Eric Wetzel was supported as a National Science Foundation Graduate
Research Fellow. We thank Dr Matthijs Toose of the University of Minnesota for
performing the boundary element calculations of figures 1(a) and 1(b), and Professor
John Hinch of Cambridge University for suggesting several of the explanations of
droplet behaviour.

Appendix. Eshelby tensors and concentration tensors
Eshelby (1957) provides analytical formulas for calculating the Eshelby tensor in

the principal axis system of the droplet. In this section we recast Eshelby’s results in
terms of elliptic integral functions and some convenient algebraic relations between
components. The components of the strain-rate and vorticity concentration tensors
are then written explicitly in terms of Eshelby tensor components and viscosity ratio.
These relations are used to derive analytical results in § 3, and to enable efficient
calculations of microstructure and stress as discussed in § 4.

All results are presented in the principal axes of the ellipsoid. Once the relevant
tensors have been computed in the principal axis system, they are rotated to the
problem coordinates using standard tensor rotation methods.

A.1. Simplification of the Eshelby tensors

The complete Eshelby tensor, in the principal axes and contracted notation (table 1),
has the form

Smn =


S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

 . (A 1)

The alternative Eshelby tensor is symmetric with respect to its last two indices but
anti-symmetric with respect to its first two indices. Since standard contracted notation
requires index symmetry, we define a quasi-contracted notation in table 1 to represent
the contraction of its first pair of indices. In quasi-contracted notation and principal
axes, the only non-zero components in the alternative Eshelby tensor are T44, T55,
and T66.

The fifteen non-zero components which comprise the Eshelby and alternative
Eshelby tensors in the principal axis system can be reduced to five independent
components by utilizing the relations

S13 = 1− S23 − S33, S66 = 1
2
(S12 + S21), T66 = 1

2
(S21 − S12), (A 2)

S32 = 1− S12 − S22, S55 = 1
2
(S31 + S13), T55 = 1

2
(S13 − S31), (A 3)

S21 = 1− S31 − S11, S44 = 1
2
(S23 + S32), T44 = 1

2
(S32 − S23), (A 4)
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Contracted notation Quasi-contracted notation

Contracted index index pair index pair

1 (1, 1) (1, 1)
2 (2, 2) (2, 2)
3 (3, 3) (3, 3)
4 (2, 3), (3, 2) (2, 3), −(3, 2)
5 (3, 1), (1, 3) (3, 1), −(1, 3)
6 (1, 2), (2, 1) (1, 2), −(2, 1)

Table 1. Contracted and full indices for conventional contracted notation (used for both pairs
of indices in Sijkl and the last pair of indices in Tijkl) and quasi-contracted notation (used for
the first pair of indices in Tijkl). As an example of the contracted alternative Eshelby tensor,
T66 = T1212 = T1221 = −T2112.

along with

S11 + S22 + S33 + 2(S32 + S21 + S13) = 3. (A 5)

These identities, to our knowledge, have not been reported in the literature but pro-
vide a major simplification to the computation of the Eshelby tensor. We derived
these identities through algebraic trial-and-error, starting from the formulas found in
Eshelby (1957). These relationships can be partially deduced based on incompress-
ibility arguments, but the full set seems to result from subtleties of the underlying
mathematics.

These relations reduce the two Eshelby tensors to five independent components,
but for completeness we choose to present explicit formulas for six components. These
components are given exactly as a function of ellipsoid axis ratios by Eshelby (1957),
and we write his results in terms of elliptic integral functions as

S11 = Saa = 1 + D2 Ja − Jb
D2 − C2

+
Ja − Jc
1− C2

, S23 = Sbc = D2 Jc − Jb
1− D2

, (A 6)

S22 = Sbb = 1 +
Jb − Jc
1− D2

+ C2 Ja − Jb
D2 − C2

, S31 = Sca =
Jc − Ja
1− C2

, (A 7)

S33 = Scc = 1 + C2 Ja − Jc
1− C2

+ D2 Jb − Jc
1− D2

, S12 = Sab = C2 Jb − Ja
D2 − C2

. (A 8)

For uniqueness, here we use the convention that the (1, 2, 3) principal axes are aligned
with the (a, b, c) axes of the ellipsoid, where a > b > c. However, all of the relationships
derived earlier in this section, as well as those found in §A.2, hold for any ordering
of the principal axes. The Ja type integrals can be expressed as

Ja =
C2D [F(θ, p)− E(θ, p)]

(D2 − C2)(1− C2)1/2
, (A 9)

Jb = 1− Ja − Jc, (A 10)

Jc =
(1− C2)1/2 − DE(θ, p)

(1− D2)(1− C2)1/2
, (A 11)

where F(θ, p) and E(θ, p) are elliptic integrals of the first and second kind, respectively.
p and θ are given by

p =
1

D

(
D2 − C2

1− C2

)1/2

, θ = cos−1(C). (A 12)



226 E. D. Wetzel and C. L. Tucker III

A.2. Calculating concentration tensors from Eshelby tensors

The strain-rate and vorticity concentration tensors are given as a function of the
Eshelby tensor through (2.6) and (2.9). In practice, inversion of fourth-order tensors
can be computationally intensive. For this reason we derive algebraic equations for
the components of the concentration tensors as a function of λ, Sijkl , and Tijkl .
To simplify this procedure, all calculations are done in the principal axes. For
numerical implementation the concentration tensors must be subsequently rotated
to the laboratory axes.

The strain-rate concentration tensor possesses minor symmetry for its first and
second pair of indices, and so it can be expressed in contracted notation. In the
principal axes, the non-zero components of the contracted strain-rate concentration
tensor can be expressed as

B11 =
1 + ν(S22 + S33) + ν2(S22S33 − S23S32)

Db
, (A 13)

B22 =
1 + ν(S33 + S11) + ν2(S33S11 − S31S13)

Db
, (A 14)

B33 =
1 + ν(S11 + S22) + ν2(S11S22 − S12S21)

Db
, (A 15)

B12 = −νS12 + ν(S12S33 − S13S32)

Db
, B21 = −νS21 + ν(S21S33 − S23S31)

Db
, (A 16)

B23 = −νS23 + ν(S23S11 − S21S13)

Db
, B32 = −νS32 + ν(S32S11 − S31S12)

Db
, (A 17)

B31 = −νS31 + ν(S31S22 − S32S21)

Db
, B13 = −νS13 + ν(S13S22 − S12S23)

Db
, (A 18)

B44 =
1

2 + 4νS44

, B55 =
1

2 + 4νS55

, B66 =
1

2 + 4νS66

, (A 19)

where

ν = λ− 1, (A 20)

and

Db = 1 + ν(S11 + S22 + S33)

+ν2(S11S22 + S22S33 + S33S11 − S12S21 − S23S32 − S31S13)

+ν3(S11S22S33 + S12S23S31 + S21S32S13 − S11S23S32 − S22S31S13 − S33S12S21).

(A 21)

The vorticity concentration tensor cannot be expressed in conventional contracted
notation because it possesses anti-symmetry with respect to its first pair of indices and
symmetry with respect to its second pair of indices. We therefore use quasi-contracted
notation for the first two indices and contracted notation for the second pair of
indices (table 1). The only non-zero vorticity concentration tensor components in the
principal axes are

C44 = −ν T44

1 + 2νS44

, C55 = −ν T55

1 + 2νS55

, C66 = −ν T66

1 + 2νS66

. (A 22)
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